On J-Holomorphic Variational Vector Fields and Extremal Discs
نویسندگان
چکیده
We prove that every J-holomorphic variational vector field can be realized as derivation $$\frac{d}{dt}_{|t=0}f_t$$ where $$(f_t)$$ is a one parametric family of discs. Furthermore, we discuss properness an extremal disc in bounded pseudoconvex domain.
منابع مشابه
Holomorphic vector fields and minimal Lagrangian submanifolds
The purpose of this note is to establish the following theorem: Let N be a Kahler manifold, L be an oriented immersed minimal Lagrangian submanifold of N without boundary and V be a holomorphic vector field in a neighbourhood of L in N . Let div(V ) be the (complex) divergence of V . Then the integral ∫ L div(V ) = 0. Vice versa suppose that N is Kahler-Einstein with non-zero scalar curvature a...
متن کاملIntegration of Vector Fields on Smooth and Holomorphic Supermanifolds
We give a new and self-contained proof of the existence and unicity of the flow for an arbitrary (not necessarily homogeneous) smooth vector field on a real supermanifold, and extend these results to the case of holomorphic vector fields on complex supermanifolds. Furthermore we discuss local actions associated to super vector fields, and give several examples and applications, as, e.g., the co...
متن کاملSome Remarks on Indices of Holomorphic Vector Fields
One can associate several residue-type indices to a singular point of a two-dimensional holomorphic vector field. Some of these indices depend also on the choice of a separatrix at the singular point. We establish some relations between them, especially when the singular point is a generalized curve and the separatrix is the maximal one. These local results have global consequences, for example...
متن کاملHolomorphic discs and sutured manifolds
In this paper we construct a Floer-homology invariant for a natural and wide class of sutured manifolds that we call balanced. This generalizes the Heegaard Floer hat theory of closed three-manifolds and links. Our invariant is unchanged under product decompositions and is zero for nontaut sutured manifolds. As an application, an invariant of Seifert surfaces is given and is computed in a few i...
متن کاملDifferential Graded Cohomology and Lie Algebras of Holomorphic Vector Fields
The continuous cohomology of Lie algebras of C-vector fields has proven to be a subject of great geometrical interest: One of its most famous applications is the construction of the Virasoro algebra as the universal central extension of the Lie algebra of vector fields on the circle. So there is the natural problem of calculating the continuous cohomology of the Lie algebra of holomorphic vecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2021
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-020-00605-w